

Innovation for Our Energy Future

FY2005 DOE Wind Program Implementation Meeting

Small Wind Research Turbine (SWRT)

NREL is operated by Midwest Research Institute - Battelle

Rationale for SWRT testing and furling model development

- •Poor understanding of small turbine loads and dynamic behavior especially furling
- •Lack of high quality data sets for small turbine model development and validation
- •Wind turbine aero-elastic models did not include furling
- •Test procedures unique to small turbines need to be addressed

SWRT testing and model development approach

• SWRT Test

• Most comprehensive small turbine test

• Three different turbine configurations tested

• Upgrade FAST model to include furling

> Perform model comparisons between FAST and ADAMS
> Perform model validation

> between FAST-SWRT model and SWRT data

SWRT test description

SWRT shaft sensor - first accurate small turbine thrust measurements

Pre-testing turbine characterization

Data for modeling included:

- Tail assembly and main frame:
 - Weight, Cg, bi-filar, moment of inertia about yaw axis
- Magnet can Cg and moment of inertia estimated in Solidworks
- > Tail damper properties
- > Exact turbine geometries
- Blade modal test

Max and Mean Furl vs. Mean Wind Speed **10-minute data files**

SWRT furling event – time series plot

Furling and inflow

FAST model furling upgrades

- What?• New to FAST is the availability of a lateral offset and skew angle of the rotor-shaft, rotorfurling, tail-furling, and tail inertia and aerodynamics
- Why? Requested by SWT manufacturers.
 - Recommended action from the NWTC Furling Workshop, July, 2000.
- *How?* Polled users of FAST and SWT community for potential needs.
 - Redeveloped FAST's equations of motion to incorporate furling; then codified changes.
 - Dynamics verified via comparisons to ADAMS

FAST vs. SWRT 10-minute mean/max rotor thrust force

FAST vs. SWRT 10-minute mean/max rotor RPM

FAST vs. SWRT 10-minute mean yaw error

FAST vs. SWRT 10-minute mean/max furl angle

Rotor thrust for one 10-minute file of Configuration B with resistor load – 17.6 m/s average wind speed

Rotor speed for same 10-minute time period

Rotor yaw angle for the same time period

Tail furl angle for the same time period

Outreach and industry participation examples

- SWRT test results and FAST model available on NWTC website
- Windward Engineering
 - Use SWRT data analysis results and FAST model to provide modeling capabilities to industry
- Bergey Windpower

Testing results used for turbine development

Accomplishments

- FAST furling model available
- 2 ASME papers completed documenting SWRT test and FAST modeling results
- Better understanding of small wind turbine dynamic behavior, including thrust and furling
- Better test procedures for small turbine testing
- Questions still remain on FAST furling model validation and small wind turbine modeling in general

Future Work

- SWRT testing completed

Further SWRT analysis

- model comparison for final configuration C

- Run FAST model with TurbSim to better quantify inflow effects

Final SWRT technical report

Windpower paper for 2005
 – will include some IEC 1400-2 comparisons

- Other NWTC code developments will help both small and large wind turbine modeling efforts
 - Non-linear generalized dynamic wake model, TurbSim for turbulent inflow, future FAST modifications
- Planning for future wind tunnel test to get more detailed data such as wake data?

